Sometimes astronomers study emissions from space that are not electromagnetic radiation. Some of the particles of interest to astronomers are neutrinos, cosmic rays, and gravitational waves. Neutrinos are tiny particles with no electric charge and very little or no mass. The Sun and supernovas emit neutrinos. Most neutrino telescopes consist of huge underground tanks of liquid. These tanks capture a few of the many neutrinos that strike them, while the vast majority of neutrinos pass right through the tanks.
Cosmic rays are electrically charged particles that come to Earth from outer space at almost the speed of light. They are made up of negatively charged particles called electrons and positively charged nuclei of atoms. Astronomers do not know where most cosmic rays come from, but they use cosmic-ray detectors to study the particles. Cosmic-ray detectors are usually grids of wires that produce an electrical signal when a cosmic ray passes close to them.
Gravitational waves are a predicted consequence of the general theory of relativity developed by German-born American physicist Albert Einstein. Since the 1960s astronomers have been building detectors for gravitational waves. Older gravitational-wave detectors were huge instruments that surrounded a carefully measured and positioned massive object suspended from the top of the instrument. Lasers trained on the object were designed to measure the object’s movement, which theoretically would occur when a gravitational wave hit the object. At the end of the 20th century, these instruments had picked up no gravitational waves. Gravitational waves should be very weak, and the instruments were probably not yet sensitive enough to register them. In the 1970s and 1980s American physicists Joseph Taylor and Russell Hulse observed indirect evidence of gravitational waves by studying systems of double pulsars. A new generation of gravitational-wave detectors, developed in the 1990s, uses interferometers to measure distortions of space that would be caused by passing gravitational waves.
Some objects emit radiation more strongly in one wavelength than in another, but a set of data across the entire spectrum of electromagnetic radiation is much more useful than observations in any one wavelength. For example, the supernova remnant known as the Crab Nebula has been observed in every part of the spectrum, and astronomers have used all the discoveries together to make a complete picture of how the Crab Nebula is evolving.
02 Mei 2009
Study of Other Emissions
Langganan:
Posting Komentar (Atom)
0 komentar:
Posting Komentar